Brasil
Traffic accidents are considered a serious public health problem and the significant number of deaths highlights the need for a deeper analysis of the causes of accidents. The objective of this research was to identify rules of association between the causes of accidents and the characteristics of vehicles, roads, users and the environment on Brazilian federal highways. The machine learning techniques Apriori, Eclat, FP-Growth and FP-Max were compared. The methodology proposes a data table of categorical variables, in a mixed method for data collection and transformation. A case study was carried out within a real context. The comparison between algorithms and conclude that Apriori, FP-Growth and Eclat present the same performance, with similar support indexes and amount of characteristics. The FP-Max in reverse, providing a more accurate result. The study presents association rules such as, for example, a male driver, driving who drives a vehicle on a non-holiday day, outside traffic hours, on a straight line, is associated with accidents where the cause is not keeping safety distance.
Acidentes de trânsito são considerados um sério problema de saúde pública que, somado ao expressivo número de mortos e feridos, evidencia a necessidade de uma análise mais profunda das causas de acidentes. O objetivo dessa pesquisa foi identificar regras de associações entre as causas de acidentes e as características dos veículos, das estradas, dos usuários e do meio ambiente em rodovias federais brasileiras, comparando as técnicas de aprendizado de máquina Apriori, Eclat, FP-Growth e FP-Max. A metodologia propõe uma tabulação de dados de variáveis categóricas, utilizando-se de um método misto para coleta e transformação dos dados, por meio de um procedimento dentro de um contexto real em um estudo de caso. Através dos resultados foi possível realizar a comparação entre algoritmos e concluir que Apriori, FP-Growth e Eclat apresentam o mesmo desempenho, com índices de suporte e quantidade de características similares, já o FP-Max apresentou desfecho contrário, proporcionando resultado mais preciso. O estudo apresenta regras de associações como, por exemplo, um condutor do sexo masculino, dirigindo um veículo em um dia que não seja feriado, fora do horário de pico, em uma reta, está associado com acidentes onde a causa é não guardar distância de segurança.