Estados Unidos
En su texto De Quadratura Arithmetica, de 1676, Leibniz distinguió infinita terminata de infinita interminata. Asimismo, el texto se ocupa de la noción, que se origina con Desargues, del punto de intersección a una distancia infinita para las rectas paralelas. En este trabajo, examinamos interpretaciones enfrentadas de estas nociones en el contexto del análisis que hace Leibniz de las asíntotas para hipérbolas y curvas logarítmicas. Señalamos las dificultades que surgen de combinar estas nociones de infinito. De acuerdo con lo que observan Rodríguez Hurtado et al., hay una diferencia significativa entre el modelo cartesiano de magnitudes y la búsqueda de Leibniz de un modelo cualitativo para estudiar la perspectiva, incluyendo puntos ideales en el infinito. Finalmente, mostramos cómo respetar la distinción entre estas nociones permite una interpretación consistente de las mismas.
In his 1676 text De Quadratura Arithmetica, Leibniz distinguished infinita terminata from infinita interminata. The text also deals with the notion, originating with Desargues, of the point of intersection at infinite distance for parallel lines. We examine contrasting interpretations of these notions in the context of Leibniz’s analysis of asymptotes for logarithmic curves and hyperbolas. We point out difficulties that arise due to conflating these notions of infinity. As noted by Rodríguez Hurtado et al., a significant difference exists between the Cartesian model of magnitudes and Leibniz’s search for a qualitative model for studying perspective, including ideal points at infinity. We show how respecting the distinction between these notions enables a consistent interpretation thereof.