Hugo Andrade Carrera, Soraya Sinche Maita, Pablo Hidalgo Lascano
A partir de la aparición del Covid-19, el mundo ha entrado en una nueva etapa, en la que se pretende mitigar los efectos del virus. Una de las principales medidas adoptadas por muchos países, entre ellos Ecuador, es el uso obligatorio de mascarillas en lugares públicos, y al mantener contacto con personas ajenas al círculo familiar. Es por esto que la finalidad de este artículo es desarrollar un modelo de red neuronal convolucional utilizando Tensorflow basado en MobileNetV2, que permita realizar la detección de mascarillas en tiempo real, en el que su principal aporte es el determinar si la persona está utilizando la mascarilla de forma apropiada. Posteriormente se prueba el modelo utilizando OpenCV y una red neuronal preentrenada para la detección de rostros. Adicionalmente, se analizan las métricas del desempeño de la red neuronal como son: precisión, exactitud (accuracy), exhaustividad (recall) y el valor F1. Todas las métricas se analizan en función del número de iteraciones para el entrenamiento del modelo, obteniendo como resultado un modelo que establece tres clasificaciones: rostros sin mascarilla, rostros con mascarilla mal colocada y rostros con mascarilla colocada correctamente. Sus resultados presentan valores de precisión, exhaustividad y F1 superiores al 85% y la exactitud que oscila entre el 93% para 5 iteraciones y 95% para 25 iteraciones.
Since Covid-19 appeared, the world has entered into a new stage, in which everybody is trying to mitigate the effects of the virus. The mandatory use of face masks in public places and when maintaining contact with people outside the family circle is one of mandatory measures that many countries have implemented, such as Ecuador, thus, the purpose of this article is to develop a convolutional neural network model using TensorFlow based on MobileNetV2, that allows to perform mask detection in real time video with the key feature of determining if the person is using the face mask properly or if it is not wearing a mask, in order to use the model with OpenCV and a pretrained neural network that detects faces. In addition, the performance metrics of the neural network are analyzed, including precision, accuracy, recall and the F1 score. All performance metrics consider the number of epochs for the training process, obtaining as a result a model that classifies between three groups: faces without face mask, faces wearing a face mask improperly and faces wearing a mask properly. with a great performance in all metrics; The results show values greater than 85% for precision, recall and F1 score, and accuracy values between 93% for 5 epochs and 95% for 25 epochs.