

Año 35, 2019, Especial Nº

Revista de Ciencias Humanas y Sociales ISSN 1012-1537/ ISSNe: 2477-9335 Depósito Legal pp 193402ZU45

Universidad del Zulia Facultad Experimental de Ciencias Departamento de Ciencias Humanas Maracaibo - Venezuela

Main methods to detect multiple sclerosis (MS) lesions in patients with MS

Abdullah Dhaifallah Almutairi, Rozi Mahmud, Subapriya Suppiah, Hasyma Abu Hassan Department of Imaging, Faculty of Medicine and health Sciences, University Putra Malaysia, Malaysia gs49218@student.upm.edu.my

Abstract

The aim of the study is to investigate the main methods to detect Multiple Sclerosis (MS) Lesions in patients with MS. This study was a systematic review to detect main methods to detect of MS lesion in patients with MS. As a result, we found that MRI is the most accuracy and powerful tool for diagnosing a MS especially in early phase. In conclusion, the McDonald criteria is the best criteria that it has been proposed and revised in recently years to diagnose of MS based on clinical presentation and MRI.

Keyword: Magnetic, Resonance, Imaging, Multiple, Sclerosis.

Principales métodos para detectar lesiones de esclerosis múltiple (EM) en pacientes con EM

Resumen

El objetivo del estudio es investigar los principales métodos para detectar lesiones de esclerosis múltiple (EM) en pacientes con EM. Este estudio fue una revisión sistemática para detectar los métodos principales para detectar la lesión de la EM en pacientes con EM. Como resultado, descubrimos que la RM es la herramienta más precisa y potente para diagnosticar una EM, especialmente en la fase inicial. En conclusión, los criterios de McDonald son los mejores criterios que se han propuesto y revisado en los últimos años para diagnosticar la EM según la presentación clínica y la RM. **Palabra clave:** Magnética, Resonancia, Imagenología, Múltiple, Esclerosis.

1. INTRODUCTION

Multiple sclerosis (MS) is a one of the common central nervous system disease that characterized by inflammatory demyelinating in white matter in the brain, spinal cord, and optic nerves and cerebral cortex and variable degrees of axonal loss. It is kind of autoimmune that immune system including T cells with B cells attack against CNS antigens (Holmøy & Hestvik, 2008). This disease almost effect on young people in 20 -40 years old. As well as it is more common in females than males (Garg & Smith, 2015). Unfortunately, the etiology of MS is unknown and it seems that the environment and genetic factors both of them have effect on the creation of MS (Kargarfard et al., 2017). Although MS is not an inherited but the studies have shown that the prevalence of MS in first degree relatives of patients with MS is 10–50 times higher than the other individuals (Garg & Smith, 2015). (Ascherio & Munger, 2007; Yang et al., 2019; Soo et al., 2019; Fitriani & Suryadi, 2019).

MS has a various sign and symptoms and it can effect on sensory, motor, visual, and brainstem pathways and makes a various disability including numbness, weakness, imbalance, vision dysfunction, vertigo, and bladder or bowel dysfunction (Berger, 2011). Since, this disease approximately involves young people and has serious outcomes, it is important to diagnosis it in early phases. In recently decades, neurologists and radiologists have used several methods to diagnose this disease including clinical presentation, neuroimaging including MRI, CSF analysis (to elevate IgG index) and evoked potential studies (to look for the lesion in the visual, brainstem, or spinal cord pathways) (Link & Huang, 2006). Finally, the calculated that there is no single test or methods to diagnose of MS. As well as, there is no evidence about the best method to diagnose it in early phases. The aim of this study was to review the methods to use for diagnosing of MS and answer to this question that which methods is the best way to diagnose MS in early phase?

1.1. Objective

The aim of this review was to assess and detect of the main methods that use for detecting MS Lesions in the patient with MS. Answer to this question that which methods are the best way to diagnose MS in early phase?

1.2. Materials and methods

This study was a systematic review to detect main methods to detect MS lesion in patients with MS. The protocol of this study was as follows, at first two researchers reviewed database and journal websites, including PubMed, web of science, Scopus, Google Scholar by keywords including multiple sclerosis, Lesions, MS, detect, diagnosis. Then all of the studies entered in endnote folder and the duplicate was removed, after that two researchers separately checked the title and abstract of articles, in next step, the full text of related articles was checked. Finally, the studies that related to the aim of this study and had inclusion criteria, entered in this study. Inclusion criteria were: original English article, articles published from December 2010 to December 2018. As well as exclusion criteria were: articles that were not focused on the method of detecting MS lesions and articles published before the2010 year.

Totally 11 articles were entered in this study. Figure 1 show detail of the protocol of selecting studies.

Figure 1: Flow diagram of the selection process of the study for systematic review on detect main method to diagnosis Multiple Sclerosis (MS) Lesions in patient with MS 2010- 2018

2. RESULTS

After searching databases and journal website by related keywords, totally11 studies were selected in this review and researchers screened them. Details of these studies explained below. Paul Schmidt et al. (2012) performed a study to detect the ability of the automated tool to detect FLAIR-hyperintense white-matter lesions in patients with Multiple Sclerosis in the 2011 year. Total their participants were 53 patients with MS with a lesion in different lesion volumes and area. After intervention, they found that this tools were useful to detect a FLAIR sequence and a 3D GRE T1-weighted sequence in patient with MS. Kilsdonk et al. (2016) performed a study to determine the sensitivity of 7 T versus 3 T magnetic resonance imaging pulse sequences to detect cortical grey matter lesion in patients with MS.

They entered 23 patients in their study that 19 patients were intervention group and 4 patients were a control group. After the intervention, they found that 7 T magnetic resonance imaging can detect more cortical lesions than 3 T. so they concluded that 7 T magnetic resonance imaging is more useful than 3 T for detecting a lesion in patients with MS (Kilsdonk et al., 2016). Furthermore, Datta et al. (2017) year performed a study to assess the ability of PET to detect lesions microglial activation in normal-appearing white matter. 64 patients with MS entered in this study. They used from the different approach of MRI in their study. After the intervention, they realized that the SPMS can detect more lesion inactive than RRMS, but both of them can detect an active lesion in all patients (Datta et al., 2017).

Bitirgen et al. (2017) performed the study to assess the features of corneal subbasal nerve plexus morphologic, corneal dendritic cell (DC) density, and par-papillary retinal nerve fiber layer (RNFL) thickness. Their study was cross-sectional. 87 patients entered in their study and they were divided into two groups. Their finding showed that corneal confocal microscopy can detect an axonal loss in patients with MS (Bitirgen et al., 2017). As well as, Brownlee et al. (2015) performed a study to assess the accuracy of McDonald criteria by using MRI to detect MS in patients. For this, they recruited 178 patients and they used MRI with McDonald criteria for them. They found that the McDonald criteria could identify a significant number of patients with CIS with MRI evidence of dissemination of time and space without clinical events (Indriastuti, 2019; Kosari, 2018; Sears, 2018).

Ertan et al. (2018) performed the study to assess the efficiency of Double Inversion Recovery (DIR) to detect lesion of MS in patients in the 2018 year. Total of their sample size was 24 patients with MS. Also, they assessed the relationship between the number of lesions and type of MS, patient age, gender, duration of the disease, disability, and the mean number of attacks per year. Finally, they found that the DIR sequence compared to the FLAIR sequence can detect more lesion in patients. Wang et al. (2018) performed the study in 2018 to compare the accuracy of T2-weighted spin-echo, 2D-FLAIR, and 3D-FLAIR sequences to detect lesions in MS patients. 85 patients entered this study. After the intervention, they found that 3D fluid-attenuated inversion recovery could detect more lesions than those on 2D and T2-weighted spin echo.

Yeliz et al performed a study in the 2017 year to assess the accuracy of MRI and Expanded Disability Status Scale (EDSS) to detect lesion of MS in patients. 120 patients and 19 healthy individuals were entered into this study. Their conclusion showed that their proposed model with MRI and EDSS had significant effect on detect lesion of MS. Furthermore, Becker et al. (2016) performed a study to assess the effect of D313Y mutation in the differential diagnosis of white matter lesions in patients with MS. Two female patients and one son presenting with WML and atypical clinical features for MS were assessed by mutation D313Y. Their results were that rare mutations could not only be a neglected differential diagnosis explaining the clinical picture but also a co-morbidity with or without relevance (Becker et al., 2016).

Zhang et al. (2015) in the 2015 year performed a study to provide evidence in patients with MS. In this study, they calculated a clinical data OF 527 patients with MS. the main methods that had been used for detecting MS in those patients was MRI, optical coherence tomography (OCT) and blood sample to detect of autoimmune antibodies and aquaporin (AQP-4). Finally, they calculated that MRI scanning was a useful method to detect of a lesion in patients with MS. Finally, we assessed the study of Böttcher et al. They performed a study in the 2013 year to determine the effect of MRI to detect MS in patients with Fabry disease. 11 patients with Fabry disease that initially diagnosed as MS entered in this study. Their finding was that MRI showed white matter lesion in all of them (Böttcher et al., 2013).

Ν	Authors	Size	Region	Finding	Summary
0	&Years				
1	Schmid	53 MS	Germany	They	This tool
	t et al	patients		found good	allows fast
	(2012)	with		agreement	and reliable
		different		with	segmentation
		lesion		lesions	of FLAIR-
		volumes		determined	hyperintense
				by manual	lesions,
				tracing (R2	which might
				values of	simplify the
				over 0.93	quantificatio
				independe	n of lesions
				nt of	in basic
				FLAIR	research and
				slice	even clinical
				thickness	trials.
				up to 6	
				mm).	
2	Kilsdon	19 patients	Netherlan	7 T	ultra-high
	k et al	with	ds	magnetic	field 7 T
	(2016)	multiple		resonance	magnetic
		sclerosis		imaging	resonance
		and four		detected	imaging
		control		more	more than
		subjects		cortical	doubles
				lesions	detection of
				than 3 T.	cortical
				Fluid	multiple
				attenuated	sclerosis
				inversion	lesions,

Table 1

				recovery	compared to
					3 T magnetic
					resonance
					imaging
3	Datta et	Thirty-four	United	The mean	TSPO
	al	MS patients	Kingdom	DVR in	radioligand
	(2017)	(7 with	-	NAWM of	uptake was
		secondary		patients	increased in
		progressive		was greater	the brains of
		MS		than that	MS patients
		[SPMS], 27		of the	relative to
		with		healthy	healthy
		relapsing		volunteer	controls with
		remitting		white	2 TSPO
		MS		matter for	radiotracers.
		[RRMS])		both	WML
		and 30		radioligand	showed
		healthy		S	heterogeneou
		volunteers			s patterns of
					uptake.
					Active
					lesions were
					found in
					patients with
					both RRMS
					and SPMS
4	Bitirge	Fifty-seven	Turkey	Corneal	These data
	n et al	consecutive		nerve fiber	suggest that
	(2017)	patients		density,	corneal
		with		nerve	confocal
		relapsing		branch	microscopy
		remitting		density,	demonstrates
		MS and 30		nerve fiber	axonal loss
		healthy,		length, and	and increased
		age-		the mean	DC density
		matched		parapapilla	in patients
		control		ry RNFL	with MS
		participants		thickness	
		were		were	
		enrolled in		reduced in	

Almutairi et al. Opción, Año 35, Especial No.20 (2019): 1060-1076

		the study		patients	
				with MS	
				compared	
				with	
				healthy	
				controls.	
				The	
5	Yeliz et	120 patients	Turkey	the Convex	Proposed
	al	and 19	-	Combinati	model
	(2017)	healthy		on of	classifies the
		individuals		Infinite	multiple
		were		Kernels	sclerosis
		entered to		model was	(MS)
		this study		developed	diagnosis
				to measure	level with
				the health	better
				status of	accuracy
				patients	than single
				based on	kernel,
				features	artificial
				gathered	neural
				from MRI	network and
				and EDSS	other
					machine
					learning
					methods, and
					it can also be
					used as a
					decision
					support
					system for
					identifying
					MS health
					status of
					patients.
6	Brownl	We	UK	McDonald	the
	ee et al	recruited		criteria	McDonald
	(2015)	178 patients		could	criteria allow
		with CIS		identify a	MS to be
		presenting		significant	diagnosed

Main m	<i>iethods</i>	to detect	multiple	sclerosis	(MS)	lesions	in
patients	s with M	1S					

				number of	sooner and
				patients	more often in
				with CIS	patients with
				with MRI	CIS
				evidence	
				of	
				disseminati	
				on of time	
				and space	
				without	
				clinical	
				events	
7	Ertan et	24 patients	Istanbul	More	The DIR
	al,	(9 males, 15	Turkey	lesions	sequence is
	(2018)	females;		were	superior to
		mean age		detected by	the FLAIR
		34.4±12.0		the DIR	sequence in
		(16-69)		sequence	the detection
		were		compared	of
		retrospectiv		to the	intracortical
		ely		FLAIR	and GM
		evaluated		sequence	lesions. Also,
				in all	the mixed
				regions	lesion load
				except for	on the DIR
				thalamus	sequence is
					correlated
					with cerebral
					atrophy.
8	Wang	85 brain	United	The	The 3D fluid-
	et al	MRIs in	state	number of	attenuated
	(2018)	patients		lesions on	inversion
		with		3D fluid-	recovery
		clinically		attenuated	sequence
		definite		inversion	addresses the
		multiple		recovery	disadvantage
		sclerosis		was	of poor
				significantl	infratentorial
				y higher	lesion
				than those	detection on

Almutairi et al. Opción, Año 35, Especial No.20 (2019): 1060-1076

				on	2D, while
				2D (p <	still
				0.001) and	maintaining
				T2-	the
				weighted	advantage
				spin echo	over T2-
				(p < 0.001)	weighted
					spin echo in
					the detection
					of lesions
					adjacent to
					the
					cerebrospinal
					fluid
9	Bo [¨] ttch	Eleven	Germany	All	: There are
	er et al	Fabry		patients	several
	(2013)	patients		revealed	anamnestic
		(one male,		white	and clinical
		ten females)		matter	hints
		initially		lesions on	indicating
		diagnosed		MRI. The	when Fabry
		with		lesion	disease
		multiple		pattern and	should be
		sclerosis		results of	considered a
		were		cerebrospi	relevant
		entered		nal fluid	differential
				examinatio	diagnosis of
				n were	multiple
				inconsisten	sclerosis, e.g.
				t and non-	female
				specific.	patients with
					asymmetric,
					confluent
					white matter
					lesions on
					MRI, normal
					spinal MR
					ımagıng,
					ectatic
					vertebrobasil

					ar arteries,
					proteinuria,
					or lack of
					intrathecally
					derived
					immunoglob
					ulin
					synthesis.
10	Zhang	527 patients	China	MRI	MS is more
	et al	entered in		scanning	commonly
	(2015)	this study.		was useful	misdiagnosed
		123 males		method to	with NMO-
		and 404		detect of	ON and
		females		lesion in	sjogren
				patients	syndrome,
				with MS	when
					compared to
					optic
					neuropathy,
					tumor and
					ischemic
					optic
					neuropathy
11	Becker	Two female	Germany	rare	Fabry
	et al	patients and		mutations	mutation
	(2016)	one son		could not	D313Y may
		entered in		only be a	be involved
		this study		neglected	in neural
				differential	damage
				diagnosis	resulting in
				explaining	WML
				the clinical	
				picture but	
				also a co-	
				morbidity	
				With or	
				without	
				relevance	

3. CONCLUSION

Since MS is a common inflammatory central nervous disorder that can effect on individuals in every age and every situation and it makes severe symptom and disrupts normal life of patients, it is important to find the most accurate method to the diagnosis of this disease in early stage. After reviewing the current study about methods to detect MS in a patient, we found that MRI is the most accuracy and powerful tool for diagnosing an MS, especially in the early phase. Furthermore, it is a popular method these years between neurologists and radiologists. It is noteworthy that in addition to diagnosis, MRI is the best method to evaluate prognostic as well as the efficacy of treatment and safety monitoring for MS patients. Furthermore, The McDonald criteria are the best criteria that it has been proposed and revised in recent years to diagnose MS based on clinical presentation and MRI.

REFERENCES

- ASCHERIO, A., & MUNGER, K. 2007. Environmental risk factors for multiple sclerosis. Part II: Noninfectious factors. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. Vol. 61, N^o 6: 504–513. USA.
- BECKER, J., ROLFS, A., KARABUL, N., BERLIT, P., & KRAEMER, M. 2016. D313Y mutation in the differential diagnosis of white matter lesions: Experiences from a multiple sclerosis outpatient clinic. Multiple Sclerosis Journal. Vol. 22, N° 11: 1502–1505. USA.
- BERGER, J. 2011. Functional improvement and symptom management in multiple sclerosis: clinical efficacy of current

therapies. American Journal of Managed Care. Vol. 17, N° 5: S146. USA.

- BITIRGEN, G., AKPINAR, Z., MALIK, R., & OZKAGNICI, A. 2017. Use of corneal confocal microscopy to detect corneal nerve loss and increased dendritic cells in patients with multiple sclerosis. JAMA Ophthalmology. Vol. 135, N° 7: 777–782. USA.
- BÖTTCHER, T., ROLFS, A., TANISLAV, C., BITSCH, A., KÖHLER, W., GAEDEKE, J., & DUNING, T. 2013. Fabry disease-underestimated in the differential diagnosis of multiple sclerosis? PLoS One. Vol. 8, N° 8: 71-89. USA.
- BROWNLEE, W., SWANTON, J., ALTMANN, D., CICCARELLI, O., & MILLER, D. 2015. Earlier and more frequent diagnosis of multiple sclerosis using the McDonald criteria. J Neurol Neurosurg Psychiatry. Vol. 86, N° 5: 584–585. UK.
- DATTA, G., COLASANTI, A., KALK, N., OWEN, D., SCOTT, G., RABINER, E., & CICCARELLI, O. 2017. **11C-PBR28 and 18F-PBR111 detect white matter inflammatory heterogeneity in multiple sclerosis**. Journal of Nuclear Medicine. Vol. 58, N^o 9: 1477–1482. UK.
- ERTAN, G., ARICI, O., ULUS, S., & METIN, B. 2018. Efficiency of Double Inversion Recovery (DIR) Sequence in the Evaluation of Supratentorial Cortical Lesions in Multiple Sclerosis. Neuro Quantology. Vol. 16, N° 3. Netherlands.
- FITRIANI, N., & SURYADI, I. 2019. A review study on online psycho-education for the bipolar disorder patient and their caregivers. Humanities & Social Sciences Reviews. Vol. 6, N° 2: 84-89. https://doi.org/10.18510/hssr.2018.6210. India.
- GARG, N., & SMITH, T. 2015. An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain and Behavior. Vol. 5, N° 9: 362. USA.
- HOLMØY, T., & HESTVIK, A. 2008. Multiple sclerosis: immunopathogenesis and controversies in defining the cause. Current Opinion in Infectious Diseases. Vol. 21, N° 3: 271–278. USA.

- INDRIASTUTI, H. 2019. Entrepreneurial inattentiveness, relational capabilities and value co-creation to enhance marketing performance. Giap journals. Vol 7. N° 3. India.
- KARGARFARD, M., SHARIAT, A., INGLE, L., CLELAND, J., & KARGARFARD, M. 2017. A randomized controlled trial to examine the impact of aquatic exercise training on functional capacity, balance, and perceptions of fatigue in female patients with multiple sclerosis. Archives of Physical Medicine and Rehabilitation. Netherlands.
- KILSDONK, I., JONKMAN, L., KLAVER, R., VANVELUW, S., ZWANENBURG, M., KUIJER, J., & LUIJTEN, P. 2016. Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study. Brain. Vol. 139, N° 5: 1472–1481. UK.
- KOSARI, M. 2018. The composition of the board of directors and the structure of capital in banks in the Tehran Stock Exchange. UCT Journal of Management and Accounting Studies. Vol 6. N^o 4. Iran.
- LINK, H., & HUANG, Y. 2006. Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness. Journal of Neuroimmunology. Vol. 180, N° 1-2: 17–28. Netherlands.
- SCHMIDT, P., GASER, C., ARSIC, M., BUCK, D., FÖRSCHLER, A., BERTHELE, A., ZIMMER, C. 2012. An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage. Vol. 59, N° 4: 3774–3783. Netherlands.
- SEARS, R. 2018. The Implications of a Pacing Guide on the Development of Students Ability to Prove in Geometry. International Electronic Journal of Mathematics Education. Vol 13. N° 3. pp. 171-183. UK.
- SOO, M., SHELBY, R., & JOHNSON, K. 2019. Optimizing the patient experience during breast biopsy. Journal of Breast Imaging. wbz001, <u>https://doi.org/10.1093/jbi/wbz001</u>. UK.
- WANG, K., URIBE, T., & LINCOLN, C. 2018. Comparing lesion detection of infratentorial multiple sclerosis lesions between

T2-weighted spin-echo, 2D-FLAIR, and 3D-FLAIR sequences. Clinical Imaging. Vol. 51, pp. 229–234. Netherlands.

- YANG, Y., PAN, T., & ZHANG, J. 2019. Global optimization of Norris derivative filtering with application for near-infrared analysis of serum urea nitrogen. Scientific Research Publishing. Vol 10. N° 5. China.
- ZHANG, Y., LIANG, X., WEI, S., & LI, H. 2015. Differential diagnosis for multiple sclerosis-related optic neuritis. Journal of Ophthalmology. Vol. 30, N° 1: 23–28. UK.

Revista de Ciencias Humanas y Sociales Año 35, Especial Nº 20, (2019)

Esta revista fue editada en formato digital por el personal de la Oficina de Publicaciones Científicas de la Facultad Experimental de Ciencias, Universidad del Zulia. Maracaibo - Venezuela

www.luz.edu.ve

www.serbi.luz.edu.ve

produccioncientifica.luz.edu.ve